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ABSTRACT

Motivation:Wedescribe an approach to normalize spottedmicroarray

data, based on a physically motivated calibration model. This model

consistsof twomajor components, describing thehybridizationof target

transcripts to their corresponding probes on the one hand, and the

measurement of fluorescence from the hybridized, labeled target on

the other hand. The model parameters and error distributions are esti-

mated from external control spikes.

Results:Usingapubliclyavailabledataset,weshow thatourprocedure

is capableof adequately removing the typical non-linearities of the data,

without making any assumptions on the distribution of differences in

gene expression from one biological sample to the next. Since our

model links target concentration to measured intensity, we show how

absolute expression values of target transcripts in the hybridization

solution can be estimated up to a certain degree.

Contact: kathleen.marchal@biw.kuleuven.be

Supplementary information: Supplementary data are available at

Bioinformatics online.

INTRODUCTION

Normalization of microarray measurements, the first step in

a microarray analysis trajectory, aims at removing consistent and

systematic sources of variations to allow mutual comparison of

measurements acquired from different slides and experimental

settings. Obviously, normalization largely influences the results

of all subsequent analyses (such as clustering), and therefore is

a crucial phase in the analysis of microarray data. For normalization

of spotted microarrays, different methods have been described

[for overviews, see for instance Leung and Cavalieri (2003);

Quackenbush (2002) and Bilban et al. (2002)]. In general, prepro-

cessing of spotted microarrays largely depends on the calculation of

the log-ratios of the measured intensities. For complex designs,

using ratios complicates the comparison of different experimental

conditions, especially when they are not measured with the same

reference condition. To cope with this, some approaches inherently

work with absolute intensities [e.g. ANOVA (Wolfinger et al.,
2001; Kerr et al., 2000)], or use a universal reference to estimate

absolute expression levels from the ratios (Dudley et al., 2002).

A common ratio-normalization step consists of the linearization

of the Cy3 versus Cy5 intensities [e.g. LOESS (Yang et al.,
2002)], sometimes followed by, or inherently combined with,

techniques for variance stabilization (Durbin et al., 2002; Huber
et al., 2002). These methods assume that the distribution of gene

expression shows little overall change and is balanced between the

biological samples tested (from here on referred to as the ‘Global

Normalization Assumption’). If this assumption is violated, for

instance when comparing two drastically different biological

conditions or when working with dedicated arrays, using such

a normalization may yield erratic results. Normalization algorithms

that do not require this Global Normalization Assumption have been

proposed (Wang et al., 2005; Zhao et al., 2005), but a more reliable

strategy to avoid making any assumptions regarding the distribution

of the gene expression is to use external control spikes (exogenous

RNA species that are added to the hybridization solution in known

concentrations, prior to labeling) to estimate normalization parame-

ters. Other types of experimental normalization controls, such as

housekeeping genes, spotted clone pools or spotted genomic DNA,

have also been proposed [for an overview, see Kroll and Wölfl

(2002)], but none of these are able to compensate for unbalanced

gene expression changes. By using external control spikes, it has

been shown that global mRNA changes, resulting in an uneven

distribution of expression changes, occur more frequently than

what was previously believed (van Bakel and Holstege, 2004;

van de Peppel et al., 2003), and that these changes can have

a significant impact on the interpretation of data normalized

according to the Global Normalization Assumption (Radonjic

et al., 2005).
External control spikes have previously been employed for

quality control and normalization (Radonjic et al., 2005; van de

Peppel et al., 2003; Badiee et al., 2003; Wang et al., 2003; Benes
and Muckenthaler, 2003; Hughes et al., 2001; Girke et al., 2000;
Eickhoff et al., 1999), but have seldom (Carter et al., 2005) been
exploited to their full potential. In fact, spikes are genuine calib-

ration points, in that they relate the measured intensity to the actual

RNA concentration in the hybridization solution. In this paper, we

propose a normalization procedure that can be used to estimate

absolute expression levels, and is based on spike measurements

and a calibration model. This procedure is capable of adequately

removing the typical non-linearities of the data, without making any

assumptions on the distribution of gene expression from one�To whom correspondence should be addressed.
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biological sample to the next. Moreover, estimates of absolute

expression levels instead of expression ratios, can greatly simplify

inter platform comparisons and the analysis of large, complex

designs comparing multiple biological conditions.

MODELS AND ALGORITHMS

The proposed normalization procedure is straightforward in

principle: intensity measurements of external control spikes serve

to estimate the parameters of a calibration model. These parameters

can then be used to obtain absolute expression levels for every gene

in each of the tested biological conditions. The calibration model

consists of two components, a hybridization reaction and a dye

saturation function. In the following sections a more detailed

description of this model is given, along with its corresponding

parameters and error distributions.

Hybridization reaction

This component of the model takes spot related errors into account,

which have been shown to have a large effect on the final, observed

signal (Rocke and Durbin, 2001). How these errors manifest them-

selves in the measured intensities, becomes clear when comparing

the behavior of the data in Figure 1. A plot of the Cy3 versus Cy5

spike intensities (Fig. 1, panel A) illustrates the relatively small

scanner errors: ratios of these controls seem highly conserved,

especially at upper intensity levels. Figure 1, panel B on the

other hand, displays the relation between the measured intensities

of these external control spikes to their actual concentration in the

hybridization solution. A large variation in intensity for a single

spike concentration can be observed. In view of the relatively small

scanner errors, the level of variation seen in this plot is remarkable.

Heterogeneous ‘spot capacities’, in terms of the available quantity

of probe, offer an explanation: imperfections in the spotting process

allow distinct spots to bind different amounts of target from the

hybridization solution. Whether the main source of this variation in

‘spot capacity’ can be attributed to the actual amount of deposited

cDNA, or to a measure of spot quality [e.g. probe density (Peterson

et al., 2001), cDNA probe length (Stillman and Tonkinson, 2001),

etc.], the implications are equivalent.

To explain these large variations of absolute intensities observed

for a single spike concentration, a hybridization component was

included in our model to account for these spot errors. The relation

between the amount of hybridized target (xs) and the concentration

of the corresponding transcript in the hybridization solution (x0) is
modeled by the steady state of the following reaction:

x0 þ s ,
KA

xs: ð1Þ

In our model the hybridization constant KA is assumed to be equal

for all spots on a single microarray. Differences in hybridization

constants should therefore be interpreted as variations caused by

microarray related factors such as temperature, salt concentrations,

hybridization time, etc., but do not account for gene specific

hybridization efficiencies.

A second assumption underlying our model is that the hybrid-

ization is a first order reaction, and that x0 is in excess (i.e. x0 is

constant). The latter assumption ensures that the amount of

hybridized target at the end of the reaction only depends on the

initial concentration in the hybridization solution. The amount of

probe of a spot (s) available for hybridization will decrease with an

increasing amount of hybridized target xs (s ¼ s0 � xs, s0 being the

spot size or maximal amount of available probe), so that we can

write at thermodynamic equilibrium:

xs
x0ðs0 � xsÞ

¼ KA: ð2Þ

Fig. 1. External control spikes. (A)MeasuredCy5 intensities (yCy5) plotted against Cy3 intensities (yCy3) for all external control spikes (Cy5/Cy3 ratios 1:10, 1:3,

1:1, 3:1 and 10:1). This plot illustrates the relatively small scanner errors, especially comparedwith the large variation in intensities that is observed in panelB. (B)

Non-linear relationship between measured intensity y and corresponding concentrations x0 (pg/ml) of target transcripts in the hybridization solution for all

external control spikes with a Cy5/Cy3 ratio of 1:1. A colour version of this figure can be found in the Supplementary data.
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The spot capacity s0 follows a certain distribution around an

average spot capacity ms: s0 ¼ ms + «s (i.e. additive spot error)

or s0 ¼ ms e
«s (i.e. multiplicative spot error) with «s � N(0,ss).

Whichever distribution is more appropriate in any particular case

will depend largely on the type of microarray slide and spotting

procedure used, and should be evaluated after performing the

normalization procedure, e.g. by testing the normality assumptions

of the spot error distribution. The distribution parameters ms and ss

can be considered equal for all measurements of a single array, or

treated differently on a per pin group basis to compensate for

spotting pin related variations. Finally, we assume that the

presence of distinct labels (Cy3 and Cy5) does not influence the

hybridization efficiency of the differentially labeled target

transcripts, i.e.

x0‚Cy5
x0‚Cy3

¼ xs‚Cy5
xs‚Cy3

where

x0 ¼ x0‚Cy3 þ x0‚Cy5

xs ¼ xs‚Cy3 þ xs‚Cy5: ð3Þ

In the above equations, it would be more accurate to explicitly

model the amount of non-labeled target in the solution (i.e. to

write x0 ¼ x*0 þ x0‚Cy3 þ x0‚Cy5, with x*0 being the amount of non-

labeled target), and to include parameters for labeling efficiencies.

However, since the external control spikes are added to the hybrid-

ization solution before the actual labeling reaction, effects attributed

to labeling efficiency are accounted for in the dye saturation

function, described below.

Dye saturation function

A second component of our model is the dye saturation function,

which describes the relationship between the measured intensity y
and the amount of labeled target xs, hybridized to a single spot on the
microarray:

y ¼ p1xse
«m þ p2 þ «a: ð4Þ

This dye saturation function is a simple linear equation incorpor-

ating an additive and multiplicative intensity error, respectively

represented by «a � N(0,sa) and «m � N(0,sm). This type of

function has already been used in other normalization strategies

(Durbin et al., 2002; Rocke and Durbin, 2001).

In all, there are three different error distributions that are assumed

to influence intensity measurements: additive intensity error «a,

multiplicative intensity error «m and spot capacity error «s.

The parameters of the saturation function and the variances of

the intensity error distributions are considered specific for all

measurements of a single array and dye combination. The parame-

ters of the hybridization reaction and variance of the spot error

on the other hand apply to all measurements of a single array.

As such, Cy3 and Cy5 intensities obtained from the same array

element are modeled with different saturation parameters and

intensity errors, but will share the same hybridization parameters

and spot error. Based on Equations (2)–(4), the intensities yCy3 and
yCy5, measured on a single spot s0 of the array, are related to the

amount of corresponding target x0,Cy3 and x0,Cy5 in the hybridization

solution as

yCy3 ¼ p1‚Cy3ð
x0‚Cy3s0

KA þ x0‚Cy3 þ x0‚Cy5
Þe«m‚ Cy3 þ p2‚Cy3 þ «a:Cy3 ð5Þ

yCy5 ¼ p1‚Cy5ð
x0‚Cy5s0

KA þ x0‚Cy5 þ x0‚Cy3
Þe«m‚ Cy5 þ p2‚Cy5 þ «a‚Cy5: ð6Þ

The differentially labeled targets x0,Cy3 and x0,Cy5 will compete

for the same spotted probe DNA s0. As shown in the equations

above, the intensity measured for the Cy3 channel (yCy3) is not

only dependent on the amount of Cy3 labeled target (x0,Cy3), but
also on the amount of target labeled with Cy5 (x0,Cy5), and

vice versa.

Parameter estimation

The model parameters are estimated separately for each microarray,

based on the measured intensities y of the external control spikes

and their known concentration in the hybridization solution x0. In
order to determine these model parameters, it is important to have

initial, reliable values for sm and sa. Estimates for sa,Cy3 and sa,Cy5

can easily be obtained by computing the standard deviation of the

intensities for the negative control spikes (not present in the hybrid-

ization solution). Finding a reliable measure for sm,Cy3 and sm,Cy5 is

less evident. Although the additive intensity error can be neglected,

the multiplicative errors are still confounded with the influence of

spot errors at high intensity levels. Estimating sm,Cy3 and sm,Cy5

independently for both channels from these higher intensity repli-

cate measurements is not feasible. Obtaining an adequate approx-

imation is nevertheless possible. In the higher intensity range where

the calibration controls (ratio 1:1) exhibit a log linear behavior in

a yCy3 versus yCy5 plot (Supplementary Figure S1), the main con-

tribution to the observed variation can be assigned to the multiplic-

ative intensity error. Indeed in this range, differences in spot size

will obviously nullify themselves and the additive intensity error

can be neglected. If we then assume that sm,Cy3 and sm,Cy5 con-

tribute equally to the observed variation (sm ¼ sm,Cy3 ¼ smCy5),

a value for sm can be obtained (Supplementary Figure S1).

Performing an orthogonal regression of Cy5 versus Cy3 intensities

on the selected data points will yield an error distribution of which

the standard deviation is an estimate of smH2.

Obtaining a solution for the remaining parameters (dye saturation

and hybridization parameters p1,Cy3, p1,Cy5, p2,Cy3, p2,Cy5 and KA

respectively; ms is kept constant at an arbitrary value) is done in

a least squares sense. The error sum of squares that is minimized is

that of spot capacity errors, i.e.

minðSSEs ¼
X

i

«sðiÞ2Þ ð7Þ

with respect to p1,Cy3, p2,Cy3, p1,Cy5, p2,Cy5 and KA; i indicates

a single spot.

The minimization of SSEs is done numerically. The individual

spot errors «s(i), necessary to calculate the SSEs in every iteration

(i.e. for any given set of parameter values), are of course unknown.

For every spot on the microarray, they are estimated by comparing

the expected intensity [a function of target concentration x0,Cy3 and
x0,Cy5, and a set of parameter values as indicated by (5) and (6)] to

the measured intensity values (yCy3 and yCy5) for both channels, and
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scoring the difference based on the estimators of additive and

multiplicative intensity variances. More precisely, for each pair

of measurements obtained from a single spot, the following object

function is minimized with respect to that spots error «s(i), i.e.

minðQestim ¼ QCy3
estim þ QCy5

estimÞ ð8Þ

with respect to «s(i), where

QD
estim ¼ argmin

«m‚«a

ðð «m

sm

ffiffiffi
2

p Þ2 þ ð «a

sa

ffiffiffi
2

p Þ2ÞD; D ¼ Cy3‚Cy5 ð9Þ

subject to Equations (5) and (6), i.e.

QD
estim ¼ argmin

«m

ðð «m

sm

ffiffiffi
2

p Þ2 þ ðy�p1xse
«m�p2

sa

ffiffiffi
2

p Þ2ÞD

¼ argmin
«a

ððlnðy�p2�«aÞ�lnðp2xsÞ
sm

ffiffiffi
2

p Þ2 þ ð «a

sa

ffiffiffi
2

p Þ2ÞD:

This object function is related to the probability of observing the

measured Cy3 and Cy5 intensities given the amount of hybridized

target [can be calculated according to (5) and (6) as target concen-

trations of spikes are known] and intensity error distributions. The

procedure for an entire microarray is illustrated in Figure 2. The

parameters of the intensity error distributions, sm and sa, determine

the spread of measurements around the Cy3 and Cy5 saturation

curves. The gray dots in Figure 2 depict the relation between

measured intensity and amount of hybridized target under the

assumption of equal spot sizes [i.e. all «s(i) are zero]. Most of

these are localized in regions of high intensity error and are

therefore very unlikely. However, by allowing errors «s(i) on indi-

vidual spot’s capacities, and thus altering the amount of hybridized

target per spot for both dyes (xs,Cy3 and xs,Cy5), a good correspon-

dence between intensities and saturation curves can be obtained for

both channels, and across the entire measurement range (indicated

by the black dots). It is notable how well the Cy3 and Cy5 inten-

sities, and the relationships between them, can be explained by our

model. For instance in the example given, at lower intensities, Cy3

intensities are persistently higher than Cy5 for equal amounts of

hybridized target, while the opposite is true for higher levels, a trend

that is nicely reflected by the fitted model. Notice also that, while the

ratios between Cy3 and Cy5 intensities are highly conserved—at

least at higher intensity levels—absolute intensities may vary to

a large extent for transcripts with the same target concentration x0
owing to spot inhomogenities.

Normalization: estimation of target expression levels

The obtained parameter values can be used to estimate a single

x0(t,u) (i.e. the absolute expression level of a single gene t in a single
biological condition u) based on all measurements that were

obtained for this combination of gene and condition. Although

each array and dye combination is attributed with its own set of

parameters, the normalization can be considered a global one.

Namely, for each combination of a gene and a tested biological

condition, a single expression level is estimated, irrespective of

the number of microarray slides, or the number of replicate

spots on a slide, for which this gene condition combination was

measured. In this sense, the results format of this normalization is

comparable with the VarietyGene interaction factor effects in the

models of Kerr et al. (2000), or similar factors in other ANOVA-

models.

Although this procedure can be applied to any design, its com-

plexity does depend on the used experimental setup. For a single

gene, it requires the estimation of expression values for all the

biological conditions at once. These x0(t,u) can be estimated by

minimizing the following object function (an extension of the

one used to estimate the model parameters):

minðQnorm ¼
X

C

X

Su

QSuðkÞ
normÞ ð10Þ

with respect to x0(t,C) and where

QSuðkÞ
norm ¼ ð arg min

«m‚«a

ðð «m

sm

ffiffiffi
2

p Þ2 þ ð «a

sa

ffiffiffi
2

p Þ2Þ þ ð «s

ss

ffiffiffi
2

p Þ2ÞSuðkÞ ð11Þ

subject to Equations (5) and (6)

The subscript C indicates the set of biological conditions under

survey; it applies to all conditions that are present in the experi-

mental design. The set of intensities, and the relevant array-dye

combinations of parameters, that measure an expression value

x0(t,u), is represented by Su [a single measured intensity belonging

to this set is designated by Su(k)]. So for a single gene t, expression
values for all of the biological condition present in the experiment

are estimated simultaneously (and together with all the relevant spot

errors), and in such a way that the total contribution of the three

random errors (i.e. the combined spot errors and additive

and multiplicative intensity errors for all intensity data points

that are a measure of gene t) is minimized as dictated by the

cost function in (10).

Fig. 2. Parameter estimation. At given parameter values (red and green

curve), spot errors are obtained by estimating the amount of hybridized target

xs for the measured intensities y of the external control spikes (black dots).

Grey dots depict the amount of hybridized target, assuming equal spot

capacities (no spot errors). A colour version of this figure can be found in

the Supplementary data.
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RESULTS

A publicly available dataset (Hilson et al., 2004), specifically

designed for quality control and the assessment of experimental

variation (Allemeersch et al., 2005; Hilson et al., 2004), was chosen
to illustrate the workings of our normalization method. This experi-

ment was ideally suited to validate our procedure because first, it

contained the necessary spots for measuring external control spikes,

which are required for estimating the parameters of our model.

A series of external controls (Lucidea Universal Scorecard;

Amersham Biosciences) consisted of 10 calibration spikes (added

to the hybridization solution in a ratio 1:1 and spanning up to

4.5 orders of magnitude), eight ratio spikes provided at both low

and high concentration and two negative controls, was spotted once

per pin group, resulting in a total of 24 repeats of each spike probe

per array. Second, the experimental design included only a single

biological condition (self–self experiments; all hybridizations were

conducted with the same RNA sample, extracted from aerial parts

of germinating Arabidopsis thaliana seedlings), which allows

assessing the performance of our normalization method in removing

non-linear tendencies present in microarray data. Finally, they were

outfitted with an additional set of control spikes that could be used to

verify to what extent our method was capable of approximating the

absolute target concentrations.

The results presented in this paper were obtained from non-

background corrected measurements, since no marked improve-

ments were observed after performing a background subtraction

(data not shown). The distribution of spot capacities s0 was modeled

as s0 ¼ mse
«s with «s � N(0,ss). The distribution parameters ms

and ss were assumed to be equal for all measurements of a single

array.

Removal of non-linear artifacts

Figure 3 illustrates the result of applying our method on a selection

of two arrays from the 14-array experiment. As this is a self–self

design, the same biological sample was measured four times on

these two arrays (twice labeled with Cy3 and twice with Cy5). For

the purpose of our test, we treated this self–self experiment as a dye

swap design with two hypothetically different samples (designated

C1 and C2). Estimated expression levels x0 of the �19.000 genes

are plotted in Figure 3 for C1 versus C2. Because in reality C1 and

C2 represent the same biological condition, all estimates being

centered along the bisector indicates that our model adequately

accounts for the major sources of non-linear variation in the

data. The increased variance of the estimates observed at lower

target levels is inherent to microarray technology. This range of

expression corresponds to the saturation observed in the lower

intensity region, i.e. where the additive error has a significant influ-

ence, considerably blurring the relationship between measured

intensity y and target expression level x0. Because of these satura-

tion effects, estimates of lower concentration are prone to be less

reliable.

As mentioned previously, our method is not bound by experi-

mental design. To illustrate that these results are not only achievable

with simple experimental setups, such as a color flip, we normalized

a set of four arrays as if it concerned a loop design with four

different biological conditions. A comparison of the estimated

expression levels is shown in Figure 4.

Evaluation of target expression level estimates

Although we have shown that our method is capable of estimating

absolute expression levels that respect true ratios between the dif-

ferent conditions compared, the previous experiment does not

reveal anything about the accuracy of these absolute estimates,

i.e. it does not show to what extent these absolute expression levels

approximate the actual concentrations of target in the hybridization

solution.

To verify the accuracy of estimated target concentrations, they

should be compared with their actual concentrations in the hybrid-

ization solution. Doing this for the entire population of transcripts is

impossible; as for most of the genes this concentration is unknown.

However, the dataset contains an additional set of non-commercial

spikes for which the absolute concentrations in the hybridization

solution are known. The extracted RNA samples were comple-

mented with 14 external controls at amounts of 104, 103, 102,

10, 1, 0.1 or zero copies per cell. In all 14 hybridizations, these

controls were compared with a unique reference RNA, capable of

binding to all of the 14 spike cDNA probes, always added at a con-

centration of 100 copies per cell. The experimental design for these

control spikes is summarized in Table 1. Results obtained after

performing our normalization are shown in Figure 5 [one spike

was omitted from analysis because of quality issues

(Allemeersch et al., 2005)]. Because the estimated target concen-

trations, expressed in pg/ml, were not directly comparable with the

units of copy number per cell, a linear rescaling of these values by

a factor that set our estimate of the unique reference RNA to ‘100’

(copies per cell) was performed. Figure 5 shows that, except for the

Fig. 3. Removal of non-linear artifacts. Estimated expression levels for C1

are plotted against estimated levels for C2 after normalizing a color flip

experiment. C1 and C2 in fact represent the same biological mRNA sample.

The centering of data points around the bisector (solid line) indicates that

typical microarray non-linearities are adequately accounted for.

A calibration method for microarray data
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lowest concentrations, estimated values correspond fairly well to

the true target concentrations as present in the hybridization

solution. As explained above, also here estimates of the lowest

concentrations show a higher error variance.

Comparison of target concentrations between genes

Although Figure 5 shows that concentrations can be accurately

estimated, there are several gene-dependent factors that could influ-

ence the obtained results, possibly hampering the comparison of

estimated concentrations between different genes. Gene specific

hybridization efficiencies, for instance, are not taken into account

by our model. ‘Consistent spot errors’ are another factor for which it

is theoretically impossible to compensate. Microarrays are usually

spotted in batch: experimental errors that influence the DNA probe

solutions used for spotting will affect an entire set of microarrays in

a similar way. This type of ‘consistent spot error’ will manifest itself

on individual spots across multiple microarray slides, contrary to

e.g. variations related to the spotting pins themselves, which would

also affect multiple spots on a single array. The particular setup of

the 13 external controls, used for assessing the accuracy of esti-

mated target levels, can provide some insight. Because the universal

reference RNA can hybridize to all the probes of these spikes, it

couples the spot errors of all probes during the estimation of target

concentrations. As a consequence of this coupling, consistent spot

errors could partially be compensated for, as illustrated in Figure 6.

For certain spikes (e.g. Dil2a), estimated spot capacities were per-

sistently above or below the average spot capacity ms, a feature that

was only detectable through the presence of the universal reference

RNA. As a result, estimated target concentrations can be subject

to gene specific rescaling, hampering the comparison of these

concentrations between genes. They can nevertheless be interpreted

as absolute values of expression when comparing different concen-

trations for a single gene.

Fig. 4. Removal of non-linear artifacts. Estimated expression levels are plotted after normalizing a loop design experiment with four different hypothetical

conditions (designated C1, C2, C3 and C4). Expression levels for conditions that were never measured together on the same microarray slide are directly

compared in the plots (i.e. estimated expression levels for C1 are plotted versus those for C3, and estimated expression levels for C2 are plotted versus those for

C4). All of these conditions in fact represent the same biologicalmRNA sample. The centering of data points around the bisector (solid line) indicates that typical

microarray non-linearities are adequately accounted for.

Table 1. Mixes of the 14 control spikes

Spike Spike mix 1 Spike mix 2 Spike mix 3 Spike mix 4 Spike mix 5 Spike mix 6 Spike mix 7 Reference mix

DilA1, DilB1 10 000 0 0.1 1 10 100 1000 100

DilA2, DilB2 1000 10 000 0 0.1 1 100 100 100

DilA3, DilB3 100 1000 10 000 0 0.1 1 10 100

DilA4, DilB4 10 100 1000 10 000 0 0.1 1 100

DilA5, DilB5 1 10 100 1000 10 000 0 0.1 100

DilA6, DilB6 0.1 1 10 100 1000 10 000 0 100

DilA7, DilB7 0 0.1 1 10 100 1000 10 000 100

These spike mixes were added to the hybridization samples, prior to labeling. From the total of 14 arrays, 7 were hybridized with the respective spike mixes labeled in Cy5, each time

against the referencemix labeled inCy3. The remaining seven arrayswere hybridizedwith the respective spikemixes labeled inCy3, each time against the referencemix labeled inCy5.

Concentrations are given in copy number per cell. DilB6 was omitted from analysis owing to quality issues (Allemeersch et al., 2005).
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Influence of background corrections

In our model the combination of the additive intensity error «a and

intercept of the dye saturation function p2 can be regarded as an

elementary model for the entire slide’s background. Having a single

background for all spots is different from the spot specific back-

ground corrections performed during standard microarray analysis,

which estimate a spot specific background from pixels correspond-

ing to the area of the glass slide surrounding the spotted probe. This

background model is by no means a restriction concerning the use of

background corrected values; our normalization can be applied to

both raw and background corrected intensities. Moreover, our

method is perfectly capable of working with negative intensity

values that may arise when measurements are below background.

Whether or not using background corrected measurements is advis-

able, depends largely on the data quality. This is illustrated in

Supplementary Figure S2. Performing a spot specific background

correction prior to applying our model would ideally result in the

lower saturation limit of our model (p2) becoming zero. In reality,

the estimate for p2 will indeed be lower, but never reaches a zero

level. In general, we have observed a trade-off: background

corrected measurements have a larger linear range, but at the

expense of increased measurement errors for lower concentrations.

DISCUSSION

In this paper we present an approach for normalizing microarray

data using external control spikes to fit a calibration model. This

model incorporates parameters and error distributions representing

both the hybridization of labeled target to complementary probes

and the subsequent measurement of fluorescence intensities. Exter-

nal control spikes serve to estimate the model parameters. The

obtained parameter values are then employed to estimate absolute

levels of expression for the remaining genes. For each combination

of a gene and a tested biological condition, a single absolute target

level is estimated, taken the specificities of the design.

The model in itself is fairly basic, in that, with the exception of

spot size errors, it is aimed at capturing the global characteristics of

an experiment and their overall influence on intensity measure-

ments, generalizing on hard to quantify local sources of variation.

The combination of the additive intensity error «a and intercept of

the dye saturation function p2, for instance, can be regarded as

a global model for the entire slide’s background.

The array specific hybridization constant KA, another global fac-

tor, obviously does not account for transcript specific hybridization

efficiencies. Therefore, care should be taken when interpreting the

estimated expression levels as actual concentrations or when com-

paring estimated target levels between genes. On the other hand,

probe sequences for spotted microarrays are often specifically

selected to have properties that obviate large differences in tran-

script specific hybridization effects. Besides these gene specific

hybridization effects, comparison of estimated target levels between

genes is also complicated by ‘consistent spot errors’ across multiple

slides. These errors, resulting from experimental inaccuracies in the

probe preparation, can arise when microarray slides are spotted in

batch. Owing to the characteristics of microarray technology, they

cannot be dealt with modelwise.

Although our model is a simplification of physical reality dealing

with errors in a global, non-gene specific way, results show that our

method is capable of adequately linearizing and normalizing

microarray data. An important difference over most existing

normalization methods is that our procedure does not rely on

any assumptions on the distribution of gene expression levels

from one biological sample to the next. Hence, our procedure is

particularly well-suited to normalize experiments for which the

Fig. 5. Evaluation of absolute expression level estimates. Estimated target

concentrations (copy number per cell) for all of the 13 controls are plotted

against the actual, spiked concentrations. The solid line depicts the bisector.

Fig. 6. Consistent spot errors. Estimated spot capacities, corresponding to the

14 microarrays of the experimental design, are plotted for each of the 13 ex-

ternal controls, revealing consistent across-array spot errors. The solid line

represents the mean spot capacity.
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Global Normalization Assumption may not be entirely valid, i.e.

experiments for which there is no symmetry in the amount of genes

that are up-regulated versus down-regulated. Such is typically the

case with experiments comparing drastically contrasting biological

conditions or with dedicated microarrays, containing only a limited

number of probes, representing genes involved in the studied

biological process.

In contrast to other normalization methods that use spikes to

circumvent the Global Normalization Assumption (van de Peppel

et al., 2003), our procedure computes absolute expression levels,

avoiding the use of ratios. Moreover, for the described experiment,

the estimated absolute expression levels approximate the actual

concentrations fairly well. Some caution is nevertheless advised

when interpreting estimated concentrations as such. This is only

problematic as far as comparing expression levels between different

genes; the points discussed above have little or no consequence if

a comparison is made between estimated target levels across

biological conditions for a single gene. Conclusively, our method

offers a novel approach to normalize spotted microarrays that

combines the advantages of some ANOVA based approaches,

which also estimate absolute expression levels, and methods that

perform data linearization (e.g. LOESS). The procedure offers

independence of assumptions concerning the distribution of gene

expression and retains much of the inherent calibration information

of external control spike measurements.
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